Topic: Energy and Environment

Elevated CO2 and Temperature Enhance the Grain Yield and Quality of Rice

Setting the stage for their study, Roy et al. (2015) write that rice is “one of the most important C3 species of cereal crops,” adding that it “generally responds favorably to elevated CO2.” However, they note that the actual response of rice crops to elevated CO2 and warming “is uncertain.” The team of five Indian scientists set out “to determine the effect of elevated CO2 and night time temperature on (1) biomass production, (2) grain yield and quality and (3) C [carbon], N [nitrogen] allocations in different parts of the rice crop in tropical dry season.”

The experiment they designed to achieve these objectives was carried out at the ICAR-Central Rice Research Institute in Cuttack, Odisha, India, using open-top-chambers in which rice (cv. Naveen) was grown in either control (ambient CO2 and ambient temperature), elevated CO2 (550 ppm, ambient temperature) or elevated CO2 and raised temperature (550 ppm and +2°C above ambient) conditions for three separate growing seasons.

In discussing their findings, Roy et al. write that the aboveground plant biomass, root biomass, grain yield, leaf area index and net C assimilation rates of the plants growing under elevated CO2 conditions all showed significant increases (32, 26, 22, 21, and 37 percent, respectively) over their ambient counter-parts. Each of these variables were also enhanced under elevated CO2 and increased temperature conditions over ambient CO2 and temperature, though to a slightly lesser degree than under elevated CO2 conditions alone. 

With respect to grain quality, the authors report there was no difference among the parameters they measured in any of treatments, with the exception of starch and amylose content, which were both significantly higher in the elevated CO2 and elevated CO2 plus elevated temperature treatments. The C and N grain yields were also both significantly increased in both of these treatments compared with control conditions.

The results of this study thus bode well for the future of rice production in India during the dry season. As the CO2 concentration of the air rises, yields will increase.  And if the temperature rises as models project, yields will still increase, though by not quite as much. These findings, coupled with the fact that the grain nutritional quality (as defined by an increase in amylose content) was enhanced by elevated CO2, suggest there is a bright future in store for rice in a carbon dioxide-enhanced atmosphere.

 

Reference

Roy, K.S., Bhattacharyya, P., Nayak, A.K., Sharma, S.G. and Uprety, D.C. 2015. Growth and nitrogen allocation of dry season tropical rice as a result of carbon dioxide fertilization and elevated night time temperature. Nutrient Cycling in Agroecosystems 103: 293-309.

You Ought to Have a Look: Smoke, Clouds and Snowfall

You Ought to Have a Look is a feature from the Center for the Study of Science posted by Patrick J. Michaels and Paul C. (“Chip”) Knappenberger.  While this section will feature all of the areas of interest that we are emphasizing, the prominence of the climate issue is driving a tremendous amount of web traffic.  Here we post a few of the best in recent days, along with our color commentary.

—-

In this week’s YOTHAL edition, we’ll focus on some recent climate science findings that deserve further mention and are worthy of a deeper dive. If and when you have the time and/or inclination, you ought to have a look.

First up is a collection of papers that describe the results of a several experiments looking into cloud formation—or rather, into the availability and development of the aerosol particles that aid in cloud formation. The tiny aerosols are called cloud condensation nuclei (CCN) and without them, it is very difficult for clouds to form. 

It’s well known that sulfate particles, formed as a by-product of fossil fuel burning (primarily coal and oil), make for a good source of CCN. In fact, the change in cloud characteristics resulting from this form of air pollution are thought to have asserted a cooling pressure on the earth’s surface temperature—a cooling that has acted to offset a certain portion of the warming caused by the co-incidental emissions of carbon dioxide and other greenhouse gases.

Do Negative Climate Impacts on Food Production Lead to Violence?

Introducing their important work, Buhaug et al. (2015) note that earlier research suggests there is “a correlational pattern between climate anomalies and violent conflict” due to “drought-induced agricultural shocks and adverse economic spillover effects as a key causal mechanism linking the two phenomena.” But is this really so?

Seeking an answer to this question, the four Norwegian researchers compared half a century of statistics on climate variability, food production and political violence across Sub-Saharan Africa, which effort, in their words, “offers the most precise and theoretically consistent empirical assessment to date of the purported indirect relationship.” And what did they thereby find?

Buhaug et al. report that their analysis “reveals a robust link between weather patterns and food production where more rainfall generally is associated with higher yields.” However, they also report that “the second step in the causal model is not supported,” noting that “agricultural output and violent conflict are only weakly and inconsistently connected, even in the specific contexts where production shocks are believed to have particularly devastating social consequences,” which fact leads them to suggest that “the wider socioeconomic and political context is much more important than drought and crop failures in explaining violent conflict in contemporary Africa.”

“Instead,” as they continue, “social protest and rebellion during times of food price spikes may be better understood as reactions to poor and unjust government policies, corruption, repression and market failure,” citing the studies of Bush (2010), Buhaug and Urdal (2013), Sneyd et al. (2013) and Chenoweth and Ulfelder (2015). In fact, they state that even the IPCC’s Fifth Assessment Report concludes “it is likely that socioeconomic and technological trends, including changes in institutions and policies, will remain a relatively stronger driver of food security over the next few decades than climate change,” citing Porter et al. (2014).”

And so we learn that alarmist claims of future climate-change-induced reductions in agricultural production that lead to social unrest and violent conflicts simply are not supported by real-world observations.

 

References

Buhaug, H., Benjaminsen, T.A., Sjaastad, E. and Theisen, O.M. 2015. Climate variability, food production shocks, and violent conflict in Sub-Saharan Africa. Environmental Research Letters 10: 10.1088/1748-9326/10/12/125015.

Buhaug, H. and Urdal, H. 2013. An urbanization bomb? Population growth and social disorder in cities. Global Environmental Change 23: 1-10.

Bush, R. 2010. Food riots: poverty, power and protest. Journal of Agrarian Change 10: 119-129.

Chenoweth, E. and Ulfelder, J. 2015. Can structural conditions explain the onset of nonviolent uprisings? Journal of Conflict Resolution 10.1177/0022002715576574.

Porter, J.R. et al. 2014. Food security and food production systems. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Ed. C.B. Field et al. (Cambridge: Cambridge University Press) pp. 485-533.

Sneyd, I.Q., Legwegoh, A. and Fraser, E.D.G. 2013. Food riots: media perspectives on the causes of food protest in Africa. Food Security 5: 485-497.

You Ought to Have a Look: Ontario’s Energy Plan, Evidence-based Policy and a New Climate Sensitivity Estimate

You Ought to Have a Look is a feature from the Center for the Study of Science posted by Patrick J. Michaels and Paul C. (“Chip”) Knappenberger.  While this section will feature all of the areas of interest that we are emphasizing, the prominence of the climate issue is driving a tremendous amount of web traffic.  Here we post a few of the best in recent days, along with our color commentary.

—-

First up in this week’s edition of You Ought to Have a Look is an op-ed by Ross McKitrick (one-time Cato Adjunct who is now Chair of Energy, Ecology & Prosperity at the Frontier Centre for Public Policy and Economic Professor at the University of Guelph) who shreds the energy policy being forwarded by Kathleen Wynne, the Liberal Party Premier of Ontario. Wynne’s proposed plan—aimed to combat climate change—includes, among other things, a requirement that all homes eventually be heated by electricity (i.e., no natural gas, etc.).

McKitrick describes up the plan,

Around the time that today’s high-school students are readying to buy their first home, it will be illegal for builders to install heating systems that use fossil fuels, in particular natural gas. Having already tripled the price of power, Queen’s Park will make it all but mandatory to rely on electricity for heating.

There will be new mandates and subsidies for biofuels, electric buses for schools, extensive new bike lanes to accommodate all those bicycles Ontario commuters will be riding all winter, mandatory electric recharging stations on all new buildings, and many other Soviet-style command-and-control directives.

distills what’s wrong with it,

[E]ven if the…plan were to stop global warming in its tracks, the policies would do more economic harm than the averted climate change.

and, in inimitable Ross fashion, throws in this zinger,

The scheme is called the Climate Change Action Plan, or CCAP, but it would be more appropriately called the Climate Change Coercion Plan: the CCCP.

The entire op-ed appearing in the Financial Post is a must read.

Next up is a post at the blog IPKat (a U.K.-based Intellectual Property news blog) by Nicola Searle that provides an interesting review of a new book by Paul Cairney titled The Politics of Evidence-Based Policy Making.

Evidenced-based policy making (EBPM) is the idea that, well, policy should be based on some sort of evidence. But as Searle (and Cairney) point out, this is a lot more complicated than it seems. Searle eloquently describes the situation as: “Policymaking isn’t a Mondrian, it’s a Monet.”

Rather than the (utopian) linear view that “evidence” clearly informs the best “policy,” the situation is much more complex and involves uncertainties, interpretations, personal beliefs, outside pressures, policy goals, etc.

Searle provides this analogy:

As Cairney puts it, “in the real world, the evidence is contested, the policy process contains a large number of influential actors, and scientific evidence is one of many sources of information.” I’d described policy making in general as akin to an extended family choosing which film to watch. Uncle Alex campaigns for Barbarella, cousin Vic, holding the remote, decides you’re all watching Hulk until your sister Pat throws a tantrum unless you watch Frozen. You might consult the Rotten Tomatoes rating, but you’re convinced that critic from the New York Post is on the payroll of a major studios and the popular rating seems to have been spammed by bots… In the end you watch a Jude Law rom-com. And that’s the simplified version.

For more insight, check out Searle’s full post, or perhaps even Cairney’s book. This is a topic that is quite relevant to the subject of climate change policy (as well as a litany of policy that is rooted in U.S. Environmental ProtectionAgency “evidence”).

And finally, we’d be remiss if we didn’t draw attention to a new study appearing in the AGU journal Earth and Space Science by University College Dublin’s J. Ray Bates that finds that the equilibrium climate sensitivity—that is, the earth’s total surface temperature rise that results from a doubling of the atmospheric effective concentration of carbon dioxide—is “~1°C.”

Bates’ work is an update and extension of the methods and findings of (Cato Center for the Study of Science’s Distinguished Senior Fellow) Richard Lindzen and Yong-Sang Choi and represents another estimate of the climate sensitivity that falls well below the average of the climate models (3.2°C) used in the most recent IPCC report.  The lower the climate sensitivity to greenhouse gas increases, the lower the overall impacts when measured over comparative time-scales.

We’ve added the new Bates results to our lower-than-model climate sensitivity compilation (Figure 1).

Figure 1. Equilibrium climate sensitivity (ECS) estimates from new research beginning in 2011 (colored), compared with the assessed range given in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and the collection of climate models used in the IPCC AR5. The “likely” (greater than a 66% likelihood of occurrence) range in the IPCC Assessment is indicated by the gray bar. The arrows indicate the 5 to 95 percent confidence bounds for each estimate along with the best estimate (median of each probability density function; or the mean of multiple estimates; colored vertical line). The right-hand side of the IPCC AR5 range is actually the 90% upper bound (the IPCC does not actually state the value for the upper 95% confidence bound of their estimate). Ring et al. (2012) present four estimates of the climate sensitivity and the red box encompasses those estimates. Likewise, Bates (2016) presents eight estimates and the green box encompasses them. Spencer and Braswell (2013) produce a single ECS value best-matched to ocean heat content observations and internal radiative forcing.

 

Figure 1. Equilibrium climate sensitivity (ECS) estimates from new research beginning in 2011 (colored), compared with the assessed range given in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and the collection of climate models used in the IPCC AR5. The “likely” (greater than a 66% likelihood of occurrence) range in the IPCC Assessment is indicated by the gray bar. The arrows indicate the 5 to 95 percent confidence bounds for each estimate along with the best estimate (median of each probability density function; or the mean of multiple estimates; colored vertical line). The right-hand side of the IPCC AR5 range is actually the 90% upper bound (the IPCC does not actually state the value for the upper 95% confidence bound of their estimate). Ring et al. (2012) present four estimates of the climate sensitivity and the red box encompasses those estimates. Likewise, Bates (2016) presents eight estimates and the green box encompasses them. Spencer and Braswell (2013) produce a single ECS value best-matched to ocean heat content observations and internal radiative forcing.

As the Bates results are just-released, we await to see how they stand up to scrutiny (and the test of time).

The journal Earth and Space Science is open access, so everyone can go and have a look for themselves (although, fair warning, the article is very technical).

Release the Kraken

Global Science Report is a feature from the Center for the Study of Science, where we highlight one or two important new items in the scientific literature or the popular media. For broader and more technical perspectives, consult our monthly “Current Wisdom.”

Making headlines today (like the one above) is a new paper by Zoë Doubleday and colleagues documenting an increase the population of cephalopods (octopuses, cuttlefish, and squid) over the past 61 years.  The authors, after assembling a data set of historical catch rates, note that this population increase, rather than being limited to a few localized areas, seems to be occurring globally.

End of analysis.

From then on its speculation.

And the authors speculate that human-caused climate change may be behind the robust cephalopod increase. After all, the authors reason, what else has had a consistent large-scale impact over the past six decades? No analysis relating temperature trends (spatially or temporally) to cephalopod trends, no examination of other patterns of climate change and cephalopod change, just speculation.  And a new global warming meme is born—“Swarms of octopus are taking over the oceans.”

There is an overwhelming tendency to relate global warming to all manner of bad things and a great hesitation to suggest a potential link when the outcome is seemingly beneficial. We refer to this as the global-warming-is-bad-for-good-and-good-for-bad phenomenon. It holds a great majority of the time.

In the case of octopuses, squids, and cuttlefish, the authors are a bit guarded as to their speculation of impact of the increase in cephalopod numbers—will they decimate their prey populations or will they themselves provide more prey to their predators? Apparently we’ll have to wait and see.

No doubt, the outcome will be a complex one as is the case behind the observed population increases. Depletion of fish stocks, a release of competitive pressure, and good old-fashioned natural environmental variability are also suggested as potential factors in the long-term population expansion. But complex situations don’t make for great scare stories. Global-warming-fueled bands of marauding octopuses and giant squid certainly do. 

Reference:

Doubleday, Z. A., et al., 2016. Global proliferation of cephalopods. Current Biology, 26, R387–R407.

Old-Growth Forests of Southern Chile Are Experiencing Large and Unexpected Increases in Growth and Water-Use Efficiency

Those who fear anthropogenerated climate change have long claimed that global warming will negatively impact Earth’s ecosystems, including old-growth forests, where it is hypothesized that these woodland titans of several hundred years age will suffer decreased growth and increased mortality as a consequence of predicted increases in temperature and drought. However, others see the situation as the opposite – one in which trees are enhanced by the aerial fertilization effect of rising atmospheric CO2 concentrations, which is expected to increase growth and make trees less susceptible to the deleterious effects of drought.

So which vision of the future appears more likely to come about? According to the seven member research team of Urrutia-Jalabert et al. (2015), the much more optimistic future is not only coming, it is already here.

Working in the Andean Cordilleras region of southern Chile, Urrutia-Jalabert et al. performed a series of analyses on tree ring cores they obtained from long-lived Fitzroya cupressoides stands, which they say “may be the slowest-growing and longest-lived high biomass forest stands in the world.”

Focusing on two of the more pertinent findings of their study, as shown in Figure 1 below, both the basal area increment (a surrogate for aboveground woody biomass accumulation) and intrinsic water use efficiency (a measure of drought resistance) of Fitzroya dramatically increased over the past century. Commenting on these trends, the authors write “the sustained positive trend in tree growth is striking in this old stand, suggesting that the giant trees in this forest have been accumulating biomass at a faster rate since the beginning of the [20th] century.” And coupling that finding with the 32 percent increase in water use efficiency over the same time period, Urrutia-Jalabert et al. conclude the trees “are actually responding to environmental change.” Indeed they are. Magnificently.

Climate Modeling Dominates Climate Science

Computer modeling plays an important role in all of the sciences, but there can be too much of a good thing. A simple semantic analysis indicates that climate science has become dominated by modeling. This is a bad thing.

What we did

We found two pairs of surprising statistics. To do this we first searched the entire literature of science for the last ten years, using Google Scholar, looking for modeling. There are roughly 900,000 peer reviewed journal articles that use at least one of the words model, modeled or modeling. This shows that there is indeed a widespread use of models in science. No surprise in this.

However, when we filter these results to only include items that also use the term climate change, something strange happens. The number of articles is only reduced to roughly 55% of the total.

In other words it looks like climate change science accounts for fully 55% of the modeling done in all of science. This is a tremendous concentration, because climate change science is just a tiny fraction of the whole of science. In the U.S. Federal research budget climate science is just 4% of the whole and not all climate science is about climate change.

In short it looks like less than 4% of the science, the climate change part, is doing about 55% of the modeling done in the whole of science. Again, this is a tremendous concentration, unlike anything else in science.

We next find that when we search just on the term climate change, there are very few more articles than we found before. In fact the number of climate change articles that include one of the three modeling terms is 97% of those that just include climate change. This is further evidence that modeling completely dominates climate change research.