Skip to main content
Menu

Main navigation

  • About
    • Annual Reports
    • Leadership
    • Jobs
    • Student Programs
    • Media Information
    • Store
    • Contact
    LOADING...
  • Experts
    • Policy Scholars
    • Adjunct Scholars
    • Fellows
  • Events
    • Upcoming
    • Past
    • Event FAQs
    • Sphere Summit
    LOADING...
  • Publications
    • Studies
    • Commentary
    • Books
    • Reviews and Journals
    • Public Filings
    LOADING...
  • Blog
  • Donate
    • Sponsorship Benefits
    • Ways to Give
    • Planned Giving

Issues

  • Constitution and Law
    • Constitutional Law
    • Criminal Justice
    • Free Speech and Civil Liberties
  • Economics
    • Banking and Finance
    • Monetary Policy
    • Regulation
    • Tax and Budget Policy
  • Politics and Society
    • Education
    • Government and Politics
    • Health Care
    • Poverty and Social Welfare
    • Technology and Privacy
  • International
    • Defense and Foreign Policy
    • Global Freedom
    • Immigration
    • Trade Policy
Live Now

Blog


  • Blog Home
  • RSS

Email Signup

Sign up to have blog posts delivered straight to your inbox!

Topics
  • Banking and Finance
  • Constitutional Law
  • Criminal Justice
  • Defense and Foreign Policy
  • Education
  • Free Speech and Civil Liberties
  • Global Freedom
  • Government and Politics
  • Health Care
  • Immigration
  • Monetary Policy
  • Poverty and Social Welfare
  • Regulation
  • Tax and Budget Policy
  • Technology and Privacy
  • Trade Policy
Archives
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • June 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • December 2016
  • November 2016
  • October 2016
  • September 2016
  • August 2016
  • July 2016
  • June 2016
  • May 2016
  • April 2016
  • March 2016
  • February 2016
  • January 2016
  • December 2015
  • November 2015
  • October 2015
  • September 2015
  • August 2015
  • July 2015
  • June 2015
  • May 2015
  • April 2015
  • March 2015
  • February 2015
  • January 2015
  • December 2014
  • November 2014
  • October 2014
  • September 2014
  • August 2014
  • July 2014
  • June 2014
  • May 2014
  • April 2014
  • March 2014
  • February 2014
  • January 2014
  • December 2013
  • November 2013
  • October 2013
  • September 2013
  • August 2013
  • July 2013
  • June 2013
  • May 2013
  • April 2013
  • March 2013
  • February 2013
  • January 2013
  • December 2012
  • November 2012
  • October 2012
  • September 2012
  • August 2012
  • July 2012
  • June 2012
  • May 2012
  • April 2012
  • March 2012
  • February 2012
  • January 2012
  • December 2011
  • November 2011
  • October 2011
  • September 2011
  • August 2011
  • July 2011
  • June 2011
  • May 2011
  • April 2011
  • March 2011
  • February 2011
  • January 2011
  • December 2010
  • November 2010
  • October 2010
  • September 2010
  • August 2010
  • July 2010
  • June 2010
  • May 2010
  • April 2010
  • March 2010
  • February 2010
  • January 2010
  • December 2009
  • November 2009
  • October 2009
  • September 2009
  • August 2009
  • July 2009
  • June 2009
  • May 2009
  • April 2009
  • March 2009
  • February 2009
  • January 2009
  • December 2008
  • November 2008
  • October 2008
  • September 2008
  • August 2008
  • July 2008
  • June 2008
  • May 2008
  • April 2008
  • March 2008
  • February 2008
  • January 2008
  • December 2007
  • November 2007
  • October 2007
  • September 2007
  • August 2007
  • July 2007
  • June 2007
  • May 2007
  • April 2007
  • March 2007
  • February 2007
  • January 2007
  • December 2006
  • November 2006
  • October 2006
  • September 2006
  • August 2006
  • July 2006
  • June 2006
  • May 2006
  • April 2006
  • Show More
October 19, 2012 12:27PM

Is the Long‐​Awaited Snowfall Increase in Antarctica Now Underway?

By Paul C. "Chip" Knappenberger

SHARE

Global Science Report is a weekly feature from the Center for the Study of Science, where we highlight one or two important new items in the scientific literature or the popular media. For broader and more technical perspectives, consult our monthly “Current Wisdom.”

Whenever the topic of rising seas comes up, we point out that Antarctica is expected to gain mass through enhanced snowfall in a warmer climate, and therefore its contribution to global sea level rise should be negative—that is, the water locked up in the added snowfall there will act to reduce the level of the globe’s seas. The models used by the Intergovernmental  Panel on Climate Change (IPCC) in their 2007 Fourth Assessment Report project the sea level reduction from this mechanism by the end of the 21st century to amount to somewhere between 2 cm and 14 cm (roughly 1 to 6 inches). While this is not a lot, the main point is that Antarctica is not expected to be a contributor to rising seas as the climate warms. Without a large contribution from Antarctica, we will not approach alarmist projections of a meter-plus of sea level rise by century’s end.

Up to now, though, Antarctica has not exactly been with the program.

Instead of gaining mass through increased snowfall, there have been indications that Antarctica is losing ice (contributing to sea level rise) as ice discharge from its coastal glaciers exceeds gains from snow increases (which have been hard to find).  One has to wonder whether Antarctica, contrary to expectations, will continue to lose mass and become an important contributor sea level rise, or whether the projected increases in snowfall have just not yet reached a magnitude sufficient to offset the loss from glacial discharge.

Things are starting to change down there.

The research that has gotten the most attention on the subject of Antarctic mass balance has been based on observations made by the Gravity Recovery And Climate Experiment (GRACE) satellite.  This orbiter senses changes in gravity (i.e., mass) which can be caused by increasing snow and ice loads over the continent.  One key piece of information which must be factored into the calculations of ice mass change is the change in the underlying geologic formations, which are still rebounding from enormous amounts of ice lost after the end of the last ice age.  This geologic motion, known as the glacial isostatic adjustment (GIA), is largely modeled rather than directly observed. Our level of knowledge (or lack thereof) of the true GIA adds a sizable amount of uncertainty to GRACE-based estimates of the ice mass changes over time in Antarctica (and Greenland, the northern hemisphere’s cheap imitation of Antarctica).

In a widely cited finding, Velicogna (2009) reported that Antarctica was losing ice at a rate of about 104 gigatons per year (Gt/yr) during the period 2002–2006, increasing to a loss rate of 246 Gt/yr during 2006–2009 (about 374 Gt of ice are equivalent to 1 mm of sea level).  Rignot et al. (2011) also found an acceleration of ice loss there, increasing from a loss of about 209 Gt/yr (in 2003-2007) to about 265 Gt/yr from 2007 to 2010.  However, Wu et al. (2010) argued that the GIA model used in these previous studies is incorrect, and that when a more accurate GIA model is incorporated in the GRACE-based ice mass change calculations, Antarctica was only losing about 87 Gt/yr during the period 2002–2008.

Support for the GRACE-based calculations comes from the general agreement between the GRACE numbers and those calculated from studies of changes in the grounding lines of coastal glaciers and the ice flow across those grounding lines in association with the other aspects of the mass balance.  This method is known as the Input-minus-Output Method (IOM).  The IOM estimates of the average ice loss from Antarctica over the past several decades (1992–2007) lie somewhere around 136 Gt/yr, in rough agreement with the GRACE-based estimates.  However, the IOM is also subject to a lot of uncertainty. An attempt by Zwally and Giovinetto (2011) to reduce the uncertainty and increase the accuracy resulted in an IOM-based estimate of a loss of only 13 Gt/yr over the same 18-yr period and led the researchers to conclude that:

Although recent reports of large and increasing rates of mass loss with time from GRACE-based studies cite agreement with IOM results, our evaluation does not support that conclusion.

It seems that as the calculations and derivations are improved, the amount of ice mass that Antarctica is supposedly losing gets less and less.

Or perhaps it isn’t losing any mass.

Using a set of observations from a series of satellites that have been in orbit since 1992 and that measure changes in the height of the surface of the ice (ICESat), NASA’s Jay Zwally and colleagues (2012) report that Antarctica is gaining mass. Zwally recently presented his findings to a workshop of the Ice-Sheet Mass Balance and Sea Level expert group of the Scientific Committee on Antarctic Research and the International Arctic Science Committee. According to his abstract, Zwally reported that “During 2003 to 2008, the mass gain of the Antarctic ice sheet from snow accumulation exceeded the mass loss from ice discharge by 49 Gt/yr (2.5% of input), as derived from ICESat laser measurements of elevation change.”

Zwally further added, "A slow increase in snowfall with climate warming, consistent with model predictions, may be offsetting increased dynamic losses."

So the "global warming, leading to increased snowfall, leading to a drawdown of global sea level" mechanism may be operating after all.

A paper to soon appear in Geophysical Research Letters give us another enticing look at recent snowfall changes in Antarctica.  In “Snowfall driven mass change on the East Antarctic ice sheet,” Carmen Boening and colleagues from NASA’s Jet Propulsion Laboratory report that extreme precipitation (snowfall) events in recent years (beginning in 2009) have led to a dramatic gain in the ice mass in the coastal portions of East Antarctica amounting to about 350 Gt in total (Figure 1).

Media Name: 201210_blog_chip191.jpg

Figure 1. Timeseries of snow accumulation in coastal East Antarctica (shaded region in inset).
(Source: Boening et al., 2012)
Boening et al. reported that the increase in ice mass in East Antarctica has not completely offset the loss of ice mass during the same time in West Antarctica, but as this comparison is made using GRACE data, it is hard to know just how accurate it is.

Also note that a few years with a lot of snowfall does not mean that a change in the long-term snowfall rate has occurred.  Nevertheless, the situation bears careful watching.

Putting everything together, we conclude that many of the claims that Antarctica is rapidly losing ice and increasingly contributing to a rise in global sea levels must now be, at the very least, tempered, if not overturned entirely. Time will certainly tell. And time will also tell just how much we need to worry about future sea level rise. Currently, the answer seems to be “not overly much.”




References:

Boening, C. et al., 2012. Snowfall-drive mass change on the East Antarctic ice sheet. Geophysical Research Letters, in press, DOI:10.1029/2012GL053316.

Rignot, E., et al., 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, L05503, DOI:10.1029/2011GL046583

Velicogna, I., 2009. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters, 36, L19503, DOI: 10.1029/2009GL040222.

Wu, X., et al., 2010. Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nature Geoscience, 3, DOI: 10.1038/NGEO938.

Zwally, H.J., and M.B. Giovinetto, 2011. Overview and assessment of Antarctic ice-sheet mass balance estimates: 1992-2009. Surveys in Geophysics, 32, 351-376, DOI: 10.1007/s10712-011-9123-5.

Zwally, H.J., et al., 2012. Mass gains of the Antarctic ice sheet exceed losses. Presentation to the SCAR ISMAA Workshop, July 14, 2012, Portland Oregon.
Related Tags
Energy and Environment

Stay Connected to Cato

Sign up for the newsletter to receive periodic updates on Cato research, events, and publications.

View All Newsletters

1000 Massachusetts Ave, NW,
Washington, DC 20001-5403
(202) 842-0200
Contact Us
Privacy

Footer 1

  • About
    • Annual Reports
    • Leadership
    • Jobs
    • Student Programs
    • Media Information
    • Store
    • Contact

Footer 2

  • Experts
    • Policy Scholars
    • Adjunct Scholars
    • Fellows
  • Events
    • Upcoming
    • Past
    • Event FAQs
    • Sphere Summit

Footer 3

  • Publications
    • Books
    • Cato Journal
    • Regulation
    • Cato Policy Report
    • Cato Supreme Court Review
    • Cato’s Letter
    • Human Freedom Index
    • Economic Freedom of the World
    • Cato Handbook for Policymakers

Footer 4

  • Blog
  • Donate
    • Sponsorship Benefits
    • Ways to Give
    • Planned Giving
Also from Cato Institute:
Libertarianism.org
|
Humanprogress.org
|
Downsizinggovernment.org