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Politicians on both the Left and the Right have
increasingly embraced subsidies for hydrogen-
powered fuel cells as a promising way to move
America away from reliance on petroleum.
Although advocates concede that such technolo-
gies are at least several decades away from pene-
trating the market in any significant manner
because of cost considerations, less attention has
been paid to the environmental implications of
such a transition. 

Given current technology, switching from gaso-
line to hydrogen-powered fuel cells would greatly
increase energy consumption even if the hydrogen
were extracted from water rather than from fossil
fuels. That’s because it takes a tremendous amount
of electricity to harvest hydrogen and to deliver it to
consumers. Moreover, a transition from gasoline to
hydrogen would nearly double net greenhouse gas
emissions attributable to passenger vehicles, given
the current fuel mix in the electricity sector.
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Introduction

Hydrogen energy is all the rage among
American politicians at the moment. A $1.8
billion, 10-year federal program to underwrite
research in hydrogen-powered fuel cells—
termed the “FreedomCar initiative” by the
Bush administration—is a popular component
of energy legislation passed by both the House
and the Senate in 2003. In his campaign for the
White House, Sen. John F. Kerry (D-MA) put
forth an even more ambitious, $5 billion
hydrogen fuel-cell initiative. And even though
all observers agree that economically viable
hydrogen-powered vehicles will not be avail-
able for at least a couple of decades (if then),1

California governor Arnold Schwarzenegger is
promoting the use of state funds to help start
building a statewide network of hydrogen
refueling stations in the here and now.2 If
hydrogen refueling stations are available, the
theory goes, automakers will build vehicles
powered by fuel cells and people will buy them. 

Before any more taxpayer money is spent
pursuing the dream of a “hydrogen economy,”
however, policymakers need to get out their
calculators and seriously consider the environ-
mental costs of bringing this dream to reality.
If they do, they’ll find that harnessing hydro-
gen for widespread use in the energy sector will
consume more energy than it will save, and it
will worsen, not better, environmental quality.

The Challenge

Advocates of a hydrogen economy do not
envision that hydrogen will be burned directly
to create energy; instead, they envision using
hydrogen primarily as an input for fuel cells. A
fuel cell is basically a gas battery, although fuel
cells come in a variety of types and employ a
range of different materials.3 Because fuel cells
emit only water vapor and heat, environmen-
talists tout them as a source of pollution-free
energy. 

That characterization is grossly mislead-
ing, however, because it fails to consider the

issue of hydrogen production. After all, hydro-
gen does not exist in subterranean pockets
waiting to be tapped by drilling equipment.
Hydrogen is an atom fused with other atoms
that together constitute molecules of various
chemical substances. Separating hydrogen
atoms from other atoms on an industrial scale
is a technologically challenging and energy-
intensive undertaking.

There are basically two ways to produce
hydrogen. The first method (called “electrol-
ysis”) is to send through water an electric cur-
rent that separates the water’s hydrogen
atoms from its oxygen atoms. The second
method is to mix steam with some sort of
fossil fuel (usually natural gas) in a super-
heated chamber. The ensuing chemical reac-
tion produces hydrogen.

The Electrolysis Calculation
Environmentalists and other advocates of

fuel cells often cite the electrolysis route as a
viable and attractive way to reduce fossil fuel
consumption and greenhouse gas emissions.
But is it? Let’s take a look at the numbers.

It takes 39.4 kilowatt-hours of energy to
extract a kilogram of hydrogen from water.
But the energy efficiency of the electrolysis
process is only about 70 percent (that is, 30
percent of the energy used in the course of
electrolysis is wasted).4

Let’s suppose the electrical energy for the
electrolysis process is provided by a coal-fired
power plant with an overall conversion efficien-
cy of 40 percent (that is, 40 percent of the ther-
mal energy input to the plant is converted into
electrical energy—a typical figure).5 Accordingly,
the energy input to the boiler of the power plant
required to produce the kilogram of hydrogen
is 140.8 kilowatt-hours.

Now, let’s look at the fuel cell. Because the
reaction that occurs in the fuel cell produces
water vapor, the most energy we could pro-
duce from the fuel cell is 33.4 kilowatt-hours
per kilogram of hydrogen. Given that the
best fuel cells operate at about 70 percent
efficiency,6 the energy actually obtained from
the reaction of a kilogram of hydrogen in the
fuel cell is 23.3 kilowatt-hours. 
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There is one final matter to consider. If
hydrogen is to be used as a transportation fuel,
it must be compressed to at least 4,000
pounds per square inch, and that compression
requires energy. After subtracting the energy
needed for compression, we find the net out-
put from the kilogram of hydrogen in the fuel
cell is only about 17.4 kilowatt-hours.7

In sum, one must put 140.8 kilowatt-hours
of energy into the front end of a power plant
to produce 17.4 kilowatt-hours of electricity
from a hydrogen-powered fuel cell in an auto-
mobile. The overall conversion efficiency of
the whole process is a dismal 12 percent.

Now, let’s estimate the electrical output
from fuel cells that would be needed to power
the U.S. vehicle fleet. According to data from
the Bureau of Transportation Statistics, the
total vehicle-miles traveled by passenger cars,
pickup trucks, vans, and SUVs in the United
States in 2000 was 2,526 billion.8 Extensive
tests performed by Southern California
Edison Company suggest that it would take
an average of at least 0.46 kilowatt-hour of
electricity to drive a passenger vehicle a mile
down the road.9 Applying that figure to the
total 2,526 billion vehicle-miles traveled in
2000, we find that fuel cells would need to
produce 1.16 trillion kilowatt-hours to power
the U.S. vehicle fleet. Given the ratios discov-
ered above, that implies the need for 9.38 tril-
lion kilowatt-hours of energy to feed into
coal-fired power plants (the equivalent of 32
quadrillion British Thermal Units, or “32
quads” in engineering jargon).

It is interesting to compare that number
with the energy content of the U.S. gasoline
supply. In 2000 U.S. motor gasoline consump-
tion averaged 8.472 million barrels per day.10

Since reformulated gasoline has an energy
content of 5.150 million BTU per barrel, we
find that the energy content of the gasoline
consumed in 2000 equals 16 quads, or exactly
half the energy required for the fuel-cell route
using coal to generate the electricity for
hydrolysis.11

The environmental implications of moving
vehicles with hydrogen-powered fuel cells
rather than with gasoline are bracing. Replac-

ing 16 quads of gasoline-fired energy with 32
quads of coal-fired energy to produce electroly-
sis hydrogen would result in a 2.7-fold increase
in carbon emissions.12 Replacing gasoline with
electricity fired by the fuel mix currently
employed in the generation sector would
increase net carbon emissions from 309 mil-
lion metric tons to 610 million metric tons.13

Renewables to the Rescue?
Environmentalists argue that renewable

energy sources could in theory supply the
needed electrical energy and thereby reduce
use of fossil fuel and, relatedly, net carbon
emissions. The calculations, however, are
daunting. Hydroelectric power, for instance,
dwarfs all other renewable energy production
in the United States, yet the 3.75 trillion kilo-
watt-hours of electricity necessary to deliver
hydrogen from water to fuel cells14 is almost
15 times the total hydroelectric energy pro-
duced in the United States last year.15 Given
the mounting public pressure to remove exist-
ing dams, it’s unlikely that the construction of
any significant new hydroelectric generating
capacity will occur in the foreseeable future.

Photovoltaic (PV) cells, which are used to
produce solar power, are an even worse choice.
Doing an input-output analysis of the energy
obtained from a PV array vs. the energy
required to produce it is extremely difficult,
but some analysts have performed those cal-
culations and found that it would take about
eight years for a PV panel to produce as much
energy as was used to produce the panel in the
first place.16 A modern PV panel operating
over a period of 25 years can probably be
expected to convert no more than about 12
percent of the incident solar radiation striking
the cell into electrical energy.17 Since we need
56.3 kilowatt-hours of electricity to power the
electrolyzer in order to obtain an output of
17.4 kilowatt-hours from the fuel cells, if PV
cells are used to provide that electrical energy,
the efficiency of the whole process is a minus-
cule 4 percent (that is, 4 percent of the energy
in the incident solar radiation captured by the
PV cells appears as electrical output from the
fuel cells).18
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That dismal conversion efficiency has two
consequences. First, the energy required to
make the PV panel will exceed the energy pro-
duced by the fuel cells. Second, the cost of
that energy will be prohibitively expensive.

Using wind power rather than solar power
requires a different set of calculations. Unfor-
tunately, the data for those calculations are
not readily available. Like solar power facili-
ties, however, wind power facilities are quite
capital intensive, and the power from those
facilities is only intermittently available.
Accordingly, the calculations for wind-gener-
ated electricity are unlikely to be much dif-
ferent from the calculations for solar-gener-
ated electricity.19

The “Steam Reforming” Calculation
Virtually all of the hydrogen produced in

the world today is derived from natural gas in
a process called “steam reforming.” In that
process, natural gas is mixed with steam and
heated in a reformer tank. Once again, howev-
er, the chemical reactions that produce hydro-
gen require the input of energy. Additional
energy inputs are required to generate steam,
heat the reformer tank, and separate the prod-
ucts. The overall efficiency of the whole
process is only about 30 percent—much less
than if the natural gas were simply burned in
an electrical power generating plant.20

In order to provide the 1.16 trillion kilo-
watt-hours of fuel-cell output needed to power
the U.S. vehicle fleet, 66.7 billion kilograms of
hydrogen would be needed. Accordingly, about
15 trillion cubic feet of natural gas would be
required to produce that hydrogen by the
steam reforming process.21

In 2002, the last year for which we have
data, domestic natural gas consumption was
about 22.6 trillion cubic feet.22 Thus, power-
ing the domestic vehicle fleet with hydrogen
derived from natural gas would increase nat-
ural gas consumption by about 66 percent.

That figure is particularly striking given
that domestic production and imports of
Canadian gas are declining while demand is
rapidly increasing, a combination of events
that has sent natural gas prices skyrocketing.

Preliminary data indicate that the average
wellhead price in 2003 was about $5.10 per
thousand cubic feet (mcf) compared with
$2.95 per mcf in 2002.23

Furthermore, there is growing concern that
natural gas prices are destined to remain high
and that the imbalance between supply and
demand can be satisfied only with imports of
liquefied natural gas (LNG).24 Accordingly,
most if not all of the 15 trillion cubic feet of nat-
ural gas needed to produce hydrogen for fuel
cells would have to come from LNG imported
primarily from the Middle East. That would do
little to reduce energy costs or enhance the secu-
rity of our energy supplies. 

Conclusion

The economic problems involved in deliver-
ing hydrogen to fuel cells are difficult to remedy
because they stem from fundamental thermo-
dynamics. Although technological improve-
ment may well increase the efficiency with
which energy is used along some if not all of the
production chain, the challenges are so im-
mense that the confident predictions of immi-
nent economic breakthroughs heard from the
political class are hard to take seriously.25

Decisions about the relative merits of var-
ious emerging technologies are best left to
the marketplace, where private investors have
every incentive to make the soundest bets. If
hydrogen-powered fuel cells hold economic
promise, investors will have every incentive to
promote their development. If they do not,
then investors will rightly put their money
elsewhere. Subsidies simply impose political-
ly inspired judgments on market actors, and
there is no reason to think that those judg-
ments are better informed than the ones that
reign in the marketplace.

Notes
1.  According to the U.S. Department of Energy, a
hydrogen-powered car costs about $1 million to
manufacture today, and its range is limited to
about 200 miles before refueling—much less than
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the range of a gasoline-powered car. Hydrogen
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Highways,’” Los Angeles Times, January 20, 2004, p.
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cathode. At the cathode, the protons combine
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vapor. H. Petroski, “Fuel Cells,” American Scientist
91 (September–October, 2003): 398–402.

4.  M. Wang, “Hydrogen a Transportation Fuel,” Oil
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electric vehicles (Toyota’s RAV4, GM’s EV1, and
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Altra, and the Chrysler EPIC). The average energy
consumption for all electric vehicles tested was
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produce the 1.16 trillion kilowatt-hours of output
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