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Recent climate change literature has been dominated by studies which show that 

the equilibrium climate sensitivity is better constrained than the latest estimates 

from the Intergovernmental Panel on Climate Change (IPCC) and the U.S. 

National Climate Assessment (NCA) and that the best estimate of the climate 

sensitivity is considerably lower than the climate model ensemble average. From 

the recent literature, the central estimate of the equilibrium climate sensitivity is 

~2°C, while the climate model average is ~3.2°C, or an equilibrium climate 

sensitivity that is some 40% lower than the model average. 

 

To the extent that the recent literature produces a more accurate estimate of the 

equilibrium climate sensitivity than does the climate model average, it means that 

the projections of future climate change given by both the IPCC and NCA are, by 

default, some 40% too large (too rapid) and the associated (and described) 

impacts are gross overestimates. 

 

A quantitative test of climate model performance can be made by comparing the 

range of model projections against observations of the evolution of the global 

average surface temperature since the mid-20th century. Here, we perform such a 

comparison on a collection of 108 model runs comprising the ensemble used in 

the IPCC’s 5th Scientific Assessment and find that the observed global average 

temperature evolution for trend lengths (with a few exceptions) since 1980 is less 

than 97.5% of the model distribution, meaning that the observed trends are 

significantly different from the average trend simulated by climate models. For 

periods approaching 40 years in length, the observed trend lies outside of (below) 

the range that includes 95% of all climate model simulations. 

 

 

 

We conclude that at the global scale, this suite of climate models has failed.  

Treating them as mathematical hypotheses, which they are, means that it is the 

duty of scientists to, unfortunately, reject their predictions in lieu of those with a 

lower climate sensitivity.  

 

It is impossible to present reliable future projections from a collection of climate 

models which generally cannot simulate observed change. As a consequence, we 

recommend that unless/until the collection of climate models can be 

demonstrated to accurately capture observed characteristics of known climate 

changes, policymakers should avoid basing any decisions upon projections made 

from them. Further, those policies which have already be established using 

projections from these climate models should be revisited. Assessments which 

suffer from the inclusion of unreliable climate model projections include those 

produced by the IPCC and the U.S. Global Climate Change Research Program 

(including their most recent National Climate Assessment). Policies which are 

based upon such assessments include those established by the U.S. 

Environmental Protection Agency pertaining to the regulation of greenhouse gas 

emissions under the Clean Air Act. 
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INTRODUCTION EQUILIBRIUM CLIMATE SENSITIVITY MODELS VS. OBSERVATIONS 

Climate sensitivity estimates from new research beginning in 2011 (colored), compared with the assessed range given in the Intergovernmental Panel on 

Climate Change (IPCC) Fifth Assessment Report (AR5) and the collection of climate models used in the IPCC AR5. The “likely” (greater than a 66% 

likelihood of occurrence) range in the IPCC Assessment is indicated by the gray bar. The arrows indicate the 5 to 95 percent confidence bounds for each 

estimate along with the best estimate (median of each probability density function; or the mean of multiple estimates; colored vertical line). Ring et al. (2012) 

present four estimates of the climate sensitivity and the red box encompasses those estimates. The right-hand side of the IPCC AR5 range is actually the 90% 

upper bound (the IPCC does not actually state the value for the upper 95 percent confidence bound of their estimate). Spencer and Braswell (2013) produce a 

single ECS value best-matched to ocean heat content observations and internal radiative forcing. The mean climate sensitivity (3.2°C) of the climate models 

used in the IPCC AR5 60% greater than the mean of recent estimates (2.0°C). 
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20-yr Trend (1995-2014) Distribution 

Distribution of 20-yr temperature trends (left) and 30-yr temperature trends (right) from 108 climate model runs during the period ending in 2014 (blue bars). The 

observed 20-yr temperature trend (left) and 30-yr temperature trend (right) over the same intervals are indicated by the arrows colored to match the designations 

described in the previous figure. 

The annual average global surface temperatures from 108 individual CMIP5 climate model runs forced with historical (+ RCP45 since 2006) forcings were 

obtained from the KNMI Climate Explorer website. Linear trends were computed through the global temperatures from each run, ending in 2014 and beginning 

each year from 1951 through 2005. The trends for each period (ranging in length from 10 to 64 years) were averaged across all model runs (black dots).  The 

range containing 90 percent (thin black lines), and 95 percent (dotted black lines) of trends from the 108 model runs is indicated. The observed linear trends for 

the same periods were calculated from the annual average global surface temperature record compiled by the U.K. Hadley Center (HadCRUT4) (colored dots) (the 

value for 2014 was the 10-mon, January through October, average). Observed trend values which were less than or equal to the 2.5th percentile of the model trend 

distribution were colored red; observed trend values which were between the 2.5th and the 5th percentile of the model trend distribution were colored yellow; and 

observed trend values greater than the 5th percentile of the model trend distribution were colored green. 
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