Tag: climate change

The Current Climate of Extremes

What a day yesterday! First, our National Oceanic and Atmospheric Administration (NOAA) announced that 2015 was the warmest year in the thermometric, and then the Washington Post’s Jason Samenow published an op-ed titled “Global warming in 2015 made weather more extreme and it’s likely to get worse.”

Let’s put NOAA’s claim in perspective.  According to Samenow, 2015 just didn’t break the previous 2014 record, it “smashed” (by 0.16°C).  But 2015 is the height of a very large El Niño, a quasi-periodic warming of tropical Pacific waters that is known to kite global average surface temperature for a year or so. The last big one was in 1998.  It, too set the then-record for warmest surface temperature, and it was (0.12°C) above the previous year, which, like 2014, was the standing record at the time. 

So what happened in 2015 is what is supposed to happen when an El Niño is superimposed upon a warm period or at the end year of a modest warming trend.  If it wasn’t a record-smasher, there would have to be some extraneous reason why, such as a big volcano (which is why 1983 wasn’t more of a record-setter).

El Niño warms up surface temperatures, but the excess heat takes 3 to 6 months or so to diffuse into the middle troposphere, around 16,000 feet up.  Consequently it won’t fully appear in the satellite or weather balloon data, which record  temperatures in that layer, until this year.  So a peek at the satellite (and weather balloon data from the same layer) will show 1) just how much of 2015’s warmth is because of El Niño, and 2) just how bad the match is between what we’re observing and the temperatures predicted by the current (failing) family of global climate models.

On December 8, University of Alabama’s John Christy showed just that comparison to the Senate Subcommittee on Space, Science, and Competitiveness.  It included data through November, so it was a pretty valid record for 2015 (Figure 1).

Figure 1. Comparison of the temperatures in the middle troposphere as projected by the average of a collection of climate models (red) and several different observed datasets (blue and green). Note that these are not the surface temperatures, but five-year moving average of the temperatures in the lower atmopshere.

El Niño’s warmth occurs because it suppresses the massive upwelling of cold water that usually occurs along South America’s equatorial coast.  When it goes away, there’s a surfeit of cold water that comes to the surface, and global average temperatures drop.  1999’s surface temperature readings were 0.19°C below 1998’s.  In other words, the cooling, called La Niña, was larger than the El Niño warming the year before.  This is often the case.

So 2016’s surface temperatures are likely to be down quite a bit from 2015 if La Niña conditions occur for much of this year.  Current forecasts is that this may begin this summer, which would spread the La Niña cooling between 2016 and 2017.

The bottom line is this:  No El Niño, and the big spike of 2015 doesn’t happen.

Now on to Samenow. He’s a terrific weather forecaster, and he runs the Post’s very popular Capital Weather Gang web site.  He used to work for the EPA, where he was an author of the “Technical Support Document” for their infamous finding of “endangerment” from carbon dioxide, which is the only legal excuse President Obama has for his onslaught of expensive and climatically inconsequential restrictions of fossil fuel-based energy.  I’m sure he’s aware of a simple real-world test of the “weather more extreme” meme.  University of Colorado’s Roger Pielke, Jr. tweeted it out on January 20 (Figure 2), with the text “Unreported. Unspeakable. Uncomfortable. Unacceptable.  But there it is.”

 

Figure 2. Global weather-related disaster losses as a proportion of global GDP, 1990-2015.

It’s been a busy day on the incomplete-reporting-of-climate front, even as some computer models are painting an all-time record snowfall for Washington DC tomorrow.  Jason Samenow and the Capital Weather Gang aren’t forecasting nearly that amount because they believe the model predictions are too extreme.  The same logic ought to apply to the obviously “too-extreme” climate models as well, shouldn’t it?

Heat-related Death Projections Don’t Square with Observations

Global Science Report is a feature from the Center for the Study of Science, where we highlight one or two important new items in the scientific literature or the popular media. For broader and more technical perspectives, consult our monthly “Current Wisdom.”

We realize that we are 180° out of sync with the news cycle when we discuss heat-related death in the middle of Northern Hemisphere winter, but we’ve come across a recent paper that can’t wait for the heat and hype of next summer.

The paper, by Arizona State University’s David Hondula and colleagues, is a review of the recent scientific literature on “human health impacts of observed and projected increases in summer temperature.”

This topic is near and dear to our hearts, as we have ourselves contributed many papers to the scientific literature on this matter (see here).  We are especially interested in seeing how the literature has evolved over the past several years and Hondula and colleagues’ paper, which specifically looked at findings published in the 2012-2015 timeframe, fills this interest nicely.

Here’s how they summed up their analysis:

We find that studies based on projected changes in climate indicate substantial increases in heat-related mortality and morbidity in the future, while observational studies based on historical climate and health records show a decrease in negative impacts during recent warming. The discrepancy between the two groups of studies generally involves how well and how quickly humans can adapt to changes in climate via physiological, behavioral, infrastructural, and/or technological adaptation, and how such adaptation is quantified.

Did you get that? When assessing what actually happens to heat-related mortality rates in the face of rising temperatures, researchers find that “negative impacts” decline. But, when researchers attempt to project the impacts of rising temperature in the future on heat-related mortality, they predict “substantial increases.”

In other words, in the real world, people adapt to changing climate conditions (e.g., rising temperatures), but in the modeled world of the future, adaptation can’t keep up. 

On the Bright Side: A Deceleration of Sea Level Rise Along the Indian Coastline

Parker and Ollier (2015) set the tone for their new paper on sea level change along the coastline of India in the very first sentence of their abstract: “global mean sea level (GMSL) changes derived from modelling do not match actual measurements of sea level and should not be trusted” (emphasis added). In contrast, it is their position that “much more reliable information” can be obtained from analyses of individual tide gauges of sufficient quality and length. Thus, they set out to obtain such “reliable information” for the coast of India, a neglected region in many sea level studies, due in large measure to its lack of stations with continuous data of sufficient quality.

A total of eleven stations were selected by Parker and Ollier for their analysis, eight of which are archived in the PSMSL database (PSMSL, 2014) and ten in a NOAA sea level database (NOAA, 2012). The average record length of the eight PSMSL stations was 54 years, quite similar to the average record length of 53 years for the eleven NOAA stations.

Results indicated an average relative rate of sea level rise of 1.07 mm/year for all eleven Indian stations, with an average record length of 51 years. However, the two Australian researchers report this value is likely “overrated because of the short record length and the multi-decadal and interannual oscillations” of several of the stations comprising their Indian database. Indeed, as they further report, “the phase of the 60-year oscillation found in the tide gauge records is such that sea level in the North Atlantic, western North Pacific, Indian Ocean and western South Pacific has been increasing since 1985-1990,” which increase most certainly skews the rate trend of the shorter records over the most recent period of record above the actual rate of rise.

You Ought to Have a Look: 2015 Temperatures, Climate Sensitivity, and the Warming Hiatus

You Ought to Have a Look is a feature from the Center for the Study of Science posted by Patrick J. Michaels and Paul C. (“Chip”) Knappenberger.  While this section will feature all of the areas of interest that we are emphasizing, the prominence of the climate issue is driving a tremendous amount of web traffic.  Here we post a few of the best in recent days, along with our color commentary.

What’s lost in a lot of the discussion about human-caused climate change is not that the sum of human activities is leading to some warming of the earth’s temperature, but that the observed rate of warming (both at the earth’s surface and throughout the lower atmosphere) is considerably less than has been anticipated by the collection of climate models upon whose projections climate alarm (i.e., justification for strict restrictions on the use of fossil fuels) is built.

We highlight in this issue of You Ought to Have a Look a couple of articles that address this issue that we think are worth checking out.

First is this post from Steve McIntyre over at Climate Audit that we managed to dig out from among all the “record temperatures of 2015” stories. In his analysis, McIntyre places the 2015 global temperature anomaly not in real world context, but in the context of the world of climate models.

Climate model-world is important because it is in that realm where climate change catastrophes play out, and that influences the actions of real-world people to try to keep them contained in model-world.

So how did the observed 2015 temperatures compare to model world expectations? Not so well.

On the Bright Side: The Combined Effects of CO2, Temperature and Drought on Wheat

As the air’s CO2 concentration rises in the years and decades to come, the negative impacts of drought on wheat biomass and grain yield should diminish, a conclusion that can be derived from the recent work of Dias de Oliveira et al. (2015).

The five-member Australian research team noted that “elevated CO2 and high temperature are climate change drivers that, when combined, are likely to have an interactive effect on biomass and grain yield,” leading to three possible outcomes: (1) a “reduced positive effect of elevated CO2,” (2) an “amelioration of the effect of high temperature, or (3) a “synergistic effect where high temperature increases the positive effect of elevated CO2.” They also note that the resultant response “may be influenced by [plant] genotypic differences.” In an effort to study these interactions and possibilities, Dias de Oliveira et al. designed a field experiment to determine the interactive effects of CO2 and temperature, as well as those of a third variable—drought—on two pairs of sister lines of wheat (Triticum aestivum L.) over the course of a growing season, where one of the contrasting pairs of wheat sister lines differed in tillering, or branching (free vs. reduced), while the other differed in early vigor (high vs. low). The experiment was conducted out-of-doors in Western Australia in poly-tunnels under all possible combinations of CO2 concentration (400 or 700 ppm), temperature (ambient or + 3°C above ambient daytime temperature), and water status (well-watered or terminal drought post anthesis). So what did it reveal?

A 1,000-Year History of Eastern Australia Megadroughts: How Do They Compare with the Recent Occurrence of the “Big Dry”?

Drought is a common feature of climate; but every so often when a longer-lasting or somewhat severe drought occurs, it is not long before someone, somewhere, makes the claim that that drought was either caused or made worse by CO2-induced global warming. A simple test of this thesis can be conducted by examining the historic record of drought for the location in question. If it can be shown that similar (or greater) frequencies or magnitudes of drought have occurred in the past, prior to the modern increase in CO2, then it cannot be definitively concluded that the current drought is the product of anything other than natural climate variability.

Unfortunately, long-term historical drought records covering more than a few decades of time are lacking for most locations across the planet. As a result, scientists have sought to augment these short-term instrumental drought histories with much longer proxy records, records that will sometimes extend back in time several centuries to millennia. Such is the case in the recent study of Vance et al. (2015), who derived a 1,003-year proxy of historical drought in eastern Australia.

Two Millennia of Snowfall Accumulation in Antarctica

Providing the rationale for their work, Roberts et al. (2015) write that “the short and sparse instrumental record in the high latitudes of the Southern Hemisphere means investigating long-term precipitation variability in this region is difficult without access to appropriate proxy records.” It was therefore the objective of this team of nine researchers to extend the duration of the Law Dome, East Antarctica, snowfall accumulation record back in time an additional 750 years so that it would cover over two millennia.

The resultant 2035 year-long proxy (22 BC to 2012 AD) is presented in the figure below. As reported by the authors, the average long-term snow accumulation rate was calculated as 0.686 m yr-1 (27 inches) ice equivalent, which rate they say “is in agreement with previous estimates, and further supports the notion that there is no long-term trend in snow accumulation rates, or that any trend is constant and linear over the [2035-year] period of measurement.”

If this number seems low for such an icy continent, the fact is that most high-latitude locations in both hemispheres would qualify as deserts based upon annual precipitation. In many places, it is literally “too cold to snow” as the frigid air can hold only tiny amounts of moisture.

There were several decadal-scale oscillations in the record, described by the authors as “common,” with “74 events (33 positive and 41 negative) of at least a 10-year duration in the record.”  The three longest periods of above average integrated snowfall occurred over the intervals 380-442, 727-783, and 1970-2009, while the three longest periods of below average integrated snowfall occurred during 663-704, 933-975, and 1429-1468.